455 research outputs found

    Efficiency of Nonlinear Particle Acceleration at Cosmic Structure Shocks

    Full text link
    We have calculated the evolution of cosmic ray (CR) modified astrophysical shocks for a wide range of shock Mach numbers and shock speeds through numerical simulations of diffusive shock acceleration (DSA) in 1D quasi- parallel plane shocks. The simulations include thermal leakage injection of seed CRs, as well as pre-existing, upstream CR populations. Bohm-like diffusion is assumed. We model shocks similar to those expected around cosmic structure pancakes as well as other accretion shocks driven by flows with upstream gas temperatures in the range T0=104−107.6T_0=10^4-10^{7.6}K and shock Mach numbers spanning Ms=2.4−133M_s=2.4-133. We show that CR modified shocks evolve to time-asymptotic states by the time injected particles are accelerated to moderately relativistic energies (p/mc \gsim 1), and that two shocks with the same Mach number, but with different shock speeds, evolve qualitatively similarly when the results are presented in terms of a characteristic diffusion length and diffusion time. For these models the time asymptotic value for the CR acceleration efficiency is controlled mainly by shock Mach number. The modeled high Mach number shocks all evolve towards efficiencies ∼50\sim 50%, regardless of the upstream CR pressure. On the other hand, the upstream CR pressure increases the overall CR energy in moderate strength shocks (Ms∼afewM_s \sim {\rm a few}). (abridged)Comment: 23 pages, 12 ps figures, accepted for Astrophysical Journal (Feb. 10, 2005

    The Caveolin-1 Connection to Cell Death and Survival

    Get PDF
    Nunez, S (Nunez, S.)[ 1,4 ] 1. Fac Med, CEMC, Lab Comunicac Celulares, Santiago, Chile. 4. Univ Talca, Fac Hlth Sci, Talca, ChileCaveolins are a family of membrane proteins required for the formation of small plasma membrane invaginations called caveolae that are implicated in cellular trafficking processes. In addition to this structural role, these scaffolding proteins modulate numerous intracellular signaling pathways; often via direct interaction with specific binding partners. Caveolin-1 is particularly well-studied in this respect and has been attributed a large variety of functions. Thus, Caveolin-1 also represents the best-characterized isoform of this family with respect to its participation in cancer. Rather strikingly, available evidence indicates that Caveolin-1 belongs to a select group of proteins that function, depending on the cellular settings, both as tumor suppressor and promoter of cellular traits commonly associated with enhanced malignant behavior, such as metastasis and multi-drug resistance. The mechanisms underlying such ambiguity in Caveolin-1 function constitute an area of great interest. Here, we will focus on discussing how Caveolin-1 modulates cell death and survival pathways and how this may contribute to a better understanding of the ambiguous role this protein plays in cancer

    Analytic solution for nonlinear shock acceleration in the Bohm limit

    Full text link
    The selfconsistent steady state solution for a strong shock, significantly modified by accelerated particles is obtained on the level of a kinetic description, assuming Bohm-type diffusion. The original problem that is commonly formulated in terms of the diffusion-convection equation for the distribution function of energetic particles, coupled with the thermal plasma through the momentum flux continuity equation, is reduced to a nonlinear integral equation in one variable. Its solution provides selfconsistently both the particle spectrum and the structure of the hydrodynamic flow. A critical system parameter governing the acceleration process is found to be Λ=M−3/4Λ1\Lambda = M^{-3/4}\Lambda_1 , where Λ1=ηp1/mc \Lambda_1 =\eta p_1/mc , with a suitably normalized injection rate η \eta , the Mach number M >> 1, and the cut-off momentum p1 p_1 . We particularly focus on an efficient solution, in which almost all the energy of the flow is converted into a few energetic particles. It was found that (i) for this efficient solution (or, equivalently, for multiple solutions) to exist, the parameter ζ=ηp0p1/mc \zeta =\eta\sqrt{p_0 p_1}/mc must exceed a critical value ζcr∼1\zeta_{cr} \sim 1 (p0p_0 is the injection momentum), (ii) the total shock compression ratio r increases with M and saturates at a level that scales as $ r \propto \Lambda_1 (iii) the downstream power-law spectrum has the universal index q=3.5 over a broad momentum range. (iv) completely smooth shock transitions do not appear in the steady state kinetic description.Comment: 39 pages, 3 PostScript figures, uses aasms4.sty, to appear in Aug. 20, 1997 issue ApJ, vol. 48

    Sex differences in mathematics and reading achievement are inversely related: within- and across-nation assessment of 10 years of PISA data

    Get PDF
    We analyzed one decade of data collected by the Programme for International Student Assessment (PISA), including the mathematics and reading performance of nearly 1.5 million 15 year olds in 75 countries. Across nations, boys scored higher than girls in mathematics, but lower than girls in reading. The sex difference in reading was three times as large as in mathematics. There was considerable variation in the extent of the sex differences between nations. There are countries without a sex difference in mathematics performance, and in some countries girls scored higher than boys. Boys scored lower in reading in all nations in all four PISA assessments (2000, 2003, 2006, 2009). Contrary to several previous studies, we found no evidence that the sex differences were related to nations’ gender equality indicators. Further, paradoxically, sex differences in mathematics were consistently and strongly inversely correlated with sex differences in reading: Countries with a smaller sex difference in mathematics had a larger sex difference in reading and vice versa. We demonstrate that this was not merely a between-nation, but also a within-nation effect. This effect is related to relative changes in these sex differences across the performance continuum: We did not find a sex difference in mathematics among the lowest performing students, but this is where the sex difference in reading was largest. In contrast, the sex difference in mathematics was largest among the higher performing students, and this is where the sex difference in reading was smallest. The implication is that if policy makers decide that changes in these sex differences are desired, different approaches will be needed to achieve this for reading and mathematics. Interventions that focus on high-achieving girls in mathematics and on low achieving boys in reading are likely to yield the strongest educational benefits

    Human HERC5 restricts an early stage of HIV-1 assembly by a mechanism correlating with the ISGylation of Gag

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification and characterization of several interferon (IFN)-induced cellular HIV-1 restriction factors, defined as host cellular proteins or factors that restrict or inhibit the HIV-1 life cycle, have provided insight into the IFN response towards HIV-1 infection and identified new therapeutic targets for HIV-1 infection. To further characterize the mechanism underlying restriction of the late stages of HIV-1 replication, we assessed the ability of IFNbeta-induced genes to restrict HIV-1 Gag particle production and have identified a potentially novel host factor called HECT domain and RCC1-like domain-containing protein 5 (HERC5) that blocks a unique late stage of the HIV-1 life cycle.</p> <p>Results</p> <p>HERC5 inhibited the replication of HIV-1 over multiple rounds of infection and was found to target a late stage of HIV-1 particle production. The E3 ligase activity of HERC5 was required for blocking HIV-1 Gag particle production and correlated with the post-translational modification of Gag with ISG15. HERC5 interacted with HIV-1 Gag and did not alter trafficking of HIV-1 Gag to the plasma membrane. Electron microscopy revealed that the assembly of HIV-1 Gag particles was arrested at the plasma membrane, at an early stage of assembly. The mechanism of HERC5-induced restriction of HIV-1 particle production is distinct from the mechanism underlying HIV-1 restriction by the expression of ISG15 alone, which acts at a later step in particle release. Moreover, HERC5 restricted murine leukemia virus (MLV) Gag particle production, showing that HERC5 is effective in restricting Gag particle production of an evolutionarily divergent retrovirus.</p> <p>Conclusions</p> <p>HERC5 represents a potential new host factor that blocks an early stage of retroviral Gag particle assembly. With no apparent HIV-1 protein that directly counteracts it, HERC5 may represent a new candidate for HIV/AIDS therapy.</p

    Full particle simulation of a perpendicular collisionless shock: A shock-rest-frame model

    Get PDF
    The full kinetic dynamics of a perpendicular collisionless shock is studied by means of a one-dimensional electromagnetic full particle simulation. The present simulation domain is taken in the shock rest frame in contrast to the previous full particle simulations of shocks. Preliminary results show that the downstream state falls into a unique cyclic reformation state for a given set of upstream parameters through the self-consistent kinetic processes.Comment: 4 pages, 2 figures, published in "Earth, Planets and Space" (EPS), the paper with full resolution images is http://theo.phys.sci.hiroshima-u.ac.jp/~ryo/papers/shock_rest.pd

    Adaptation of EPEC-EMâ„¢ Curriculum in a Residency with Asynchronous Learning

    Get PDF
    Objective: The Education in Palliative and End-of-life Care for Emergency Medicine Project (EPEC™-EM) is a comprehensive curriculum in palliative and end-of-life care for emergency providers. We assessed the adaptation of this course to an EM residency program using synchronous and asynchronous learning.Methods: Curriculum adaptation followed Kern’s standardized six-step curriculum design process. Post-graduate year (PGY) 1-4 residents were taught all EPEC™-EM cognitive domains, divided as seven synchronous and seven asynchronous modules. All synchronous modules featured large group didactic lectures and review of EPEC™-EM course materials. Asynchronous modules use only EPEC™-EM electronic course media for resident self-study. Targeted evaluation for EPEC™-EM knowledge objectives was conducted by a prospective case-control crossover study, with synchronous learning serving as the quasi-control, using validated exam tools. We compared de-identified test scores for effectiveness of learning method, using aggregate group performance means for each learning strategy.Results: Of 45 eligible residents 55% participated in a pre-test for local needs analysis, and 78% completed a post-test to measure teaching method effect. Post-test scores improved across all EPEC™-EM domains, with a mean improvement for synchronous modules of +28% (SD=9) and a mean improvement for asynchronous modules of +30% (SD=18). The aggregate mean difference between learning methods was 1.9% (95% CI -15.3, +19.0). Mean test scores of the residents who completed the post-test were: synchronous modules 77% (SD=12); asynchronous modules 83% (SD=13); all modules 80% (SD=12).Conclusion: EPEC™-EM adapted materials can improve resident knowledge of palliative medicine domains, as assessed through validated testing of course objectives. Synchronous and asynchronous learning methods appear to result in similar knowledge transfer, feasibly allowing some course content to be effectively delivered outside of large group lectures. [West J Emerg Med. 2010; 11(5):491-498.
    • …
    corecore